
On the quantisation of the two-dimensional harmonic oscillator with 2:1 resonance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 691

(http://iopscience.iop.org/0305-4470/19/5/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 19 (1986) 691-703. Printed in Great Britain 

On the quantisation of the two-dimensional harmonic oscillator 
with 2 : 1 resonance 

T P Grozdanovt, Subhash Saini and H S Taylor 
Department of Chemistry, University of Southern California, Los Angeles, California 
90089-0482, USA 

Received 5 July 1985 

Abstract. Exact eigenfunctions, which simultaneously diagonalise the Hamiltonian of a 
2:  1 resonant, two-dimensional harmonic oscillator and an additional constant of the 
motion, cubic in the Cartesian displacement coordinates and momenta, are found by direct 
solution of the Schrodinger equation in parabolic coordinates. The connection with the 
usual harmonic-oscillator Cartesian basis is established and used in the formulation of a 
second-order perturbation theory for the oscillator with a particular form of non-linear 
coupling. Uniform semiclassical quantisation of the unperturbed oscillator is discussed. 

1. Introduction 

The two-dimensional anisotropic harmonic oscillator with 2 : 1 frequency ratio is the 
starting point for the investigation of vibrational motion in many molecular systems 
such as COz (Fermi 1931). CO2 is characterised by the so-called Fermi resonance 
between the two vibrational degrees of freedom. Model Hamiltonians (Noid et a1 
1979, Eaker and Schatz 1984) include various types of non-linear couplings, but in 
order to treat them, either perturbationally or semiclassically, a detailed understanding 
of quantum properties of the zero order, i.e. uncoupled, degenerate, system is necessary. 

The Hamiltonian under consideration is of the form (we use the units in which 
m = h = wy = 1) 

H = f(pt; +p$+4x2+yZ). (1) 

The corresponding Schrodinger equation is separable in (x, y ) coordinates, reflecting 
the fact that the energies associated with each separable degree of freedom are integrals 
of motion. The wavefunctions &,,,,(x, y )  = t,h,,(x)+,,(y) (nx, ny = 0,1,2,. . .) are the 
products of the usual one-dimensional harmonic oscillator eigenfunctions (Landau 
and Lifshitz 1977). The degeneracy of each energy level 

E,  = 2n, + ny + = n + $, n = 0 , 1 , 2  , . . . ,  (2) 
is equal to [ n/2] + 1 ([ 3 denotes the integer part of the number). As the analysis of 
the SU(2) symmetry of the problem suggests (Demkov 1963) it is more convenient to 
label the eigenfunctions CL,,,, belonging to the same n-subspace by $,,+, where 

I-L = nx - j ,  j = f[fn], (3) 

t On leave from the Institue of Physics, Belgrade, Yugoslavia. 
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so that for given n, p takes on the values 
p = -j, - j +  1, .  . . , +j. (4) 

Note that for n of the form n = 41, 41+ 1 ( I  integer), j is an integer, whereas for 
n = 41 + 2, 41 + 3, j is a half-integer. 

It has been shown by Noid et al (1979) that the Hamilton-Jacobi equation for the 
classical analogue of (1) allows for separation of variables in parabolic coordinates. 
The corresponding separation constant can then easily be expressed in terms of 
displacement coordinates and momenta in order to obtain an additional (classical) 
integral of motion. The (properly symmetrised) quantum analogue is given by 

K = 2x(y2 - P:) + P ~ ( Y P ,  + P,Y). 

x, y = (2%,y) - l /2 (a; ,y+  ax,y) ,  P x , y  = i(h4.J - ax,y) ,  

( 5 )  
If, in addition, one introduces creation and annihilation operators via relations 

1/2  t 

(in our units ox = 2, wy = 1) then the operators H and K can be written in the form 

Thus, H and K form another pair of commuting operators and can be diagonalised 
simultaneously. The corresponding eigenfunctions can be found by solving the 
Schrodinger equation in parabolic coordinates. This is done in 5 2. In 5 3 the connection 
with the Cartesian basis is established. This is then used in 5 4 to find the perturbed 
spectrum of the oscillator with a particular small non-linear coupling. Section 5 contains 
remarks concerning the semiclassical quantisation of the unperturbed oscillator. 

2. Solution of the Schrodinger equation in parabolic coordinates 

Let us define the parabolic coordinates as 

7 = [ ( xz + y y  - x y ,  

5 = s g n y [ ( ~ ~ + y ' ) ' / ~ + . ~ ] ' / ~ ,  

O<v<+a3 ,  

-CO < 5 < +CO, 

where sgn y is the sign of y. There is a two-to-one correspondence between the points 
(5,0), (-5,O) in (6, 7 )  configurational space and the points (x, 0) ( x >  0) in (x, y )  
space. As such, for well behaved potentials, any wavefunction +!I([, 7 )  in order to be 
uniform and smooth on the positive x axis should satisfy the following conditions: 

9(6,0)  = $(-e, 01, v4l,*,o, = v4 l ( -m (7) 
for any 6. 

coordinates reads 
The time-independent Schrodinger equation for Hamiltonian ( 1) in parabolic 

By representing the wavefunction in the form @(& 7) = 41(5)42( v), the variables 
can be separated in (8) with the resulting two one-dimensional equations 

d241(5)/d52+(2E52-56+ k)41(5) = 0, (9a)  
d242( v ) /  d~~ + ( 2 E v 2  - T / ~  - k )  4 2 (  7)  = 0. (9b)  
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The separation constant k represents the eigenvalues of operator (5), whose differential 
form in parabolic coordinates is given by 

The conditions imposed on functions 41(5) and 42(77) follow from the square 
integrability of +((, 7 )  and conditions ( 7 ) .  The former demands that 4,([)+0 when 
5 + fa and c#J~( 7) + 0 when 7 + +CO, whereas the latter for separable wavefunctions 
are equivalent to 

[41(5) - 41(-5)142(0) = 0, (1 la)  

(d4i/dZ/, +d41/d5I-t)42(0) = 0, ( 1 l b )  

[41(6)+ 41(-5)1 d42 /d~ lo=o .  (1 lc )  

It can be seen that ( 1  1 b )  follows from ( 1  1 a ) ,  so that ( 1  1 a )  and ( 1  1 c)  are independent 
conditions which should be satisfied simultaneously. Since the symmetric double-well 
‘potential’ in equation (9a) ( k  is assumed to be a spectral parameter) can support only 
eigenstates of even or odd parity, equations ( l l a )  and ( l l c )  immediately give the 
respective boundary conditions for 42( 7) at 7 = 0; i.e. dd2/d7l0 = 0 or 42(0) = 0. This 
result also reflects the fact that in defining the parabolic coordinates ( 6 ) ,  the domains 
of variation of 5 and 7 can be interchanged (together with the factor sgn y ) .  

Moreover, since in our case (9a) and (9b) formally differ only by the sign of the 
parameter k, the problem is reduced to solving for the eigenvalues k of one of the two 
one-dimensional boundary-value problems (say that associated with (9a)).  In prin- 
ciple, one should solve for all the eigenvalues k , ( E )  ( q  =0,  1, , . . is the number of 
zeros of the eigenfunction) of the one-dimensional problem as a function of E. Then 
the conditions 

kq ( E ) = - k,,( E ) (12) 

(where indices q and q’ correspond to eigenfunctions of the same parity) would give 
the eigenvalues of both H and K .  Actually, as shown below, due to the specifically 
simple form of the solutions of the one-dimensional problem which satisfy (12), they 
can be found in a more direct way. 

One-dimensional problems of the type defined by (9a) have been investigated by 
many authors (see, e.g., Chaudhuri and Mukherjee (1984) and references therein). 
Following the usual scheme we look for the eigenfunctions of the form (hereafter we 
drop the index 1 in ~ $ ~ ( t ) )  

4 ( [ )  = u p ” f ( u )  exp(-u2/4) (13) 
where U = t2, p = 0 ( 1 )  for even (odd) states, and f( U )  is a function regular at U = 0. 
Substituting expression (13 )  in (9a) one finds the differential equation for f( U): 

(14) 4uf’ + 2( 2 p  + 1 - 2 u 2 ) f  + [ (2E - 2p - 3) U + k l f  = 0. 

In principle, f (u )  should be sought in the form of an infinite power series of U. Here 
we will investigate under what conditions this series can be truncated, i.e. we look for 
f ( u )  in the form of a polynomial: 

N 
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0 
0 
0 

k 2 ( 2 p + 1 )  0 . . .  
4N k 4(2p+3) 0 . . .  
0 4 ( N - 1 )  k 6 ( 2 p + 5 )  0 . . .  
0 . . .  0 8 k 2 N ( 2 p + 2 N - l )  
0 

DN+i E 

0 4  k . . .  

By substituting (15) in (14), one finds that necessarily 

E = 2 N + p + z  

= 0. 

(18a)  

G n A ( 6 ,  v ) =  4 n h ( ' $ ) d n - , 4 ( 7 )  

and satisfy the orthogonality condition 

where the normalisation to unity is assumed. 
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All eigenvalues ki for n < 10 can be found analytically from (18b). They are given 
in table 1 and shown in figure 1, where in addition, their relation to the eigenvalues 
kq( E )  of the one-dimensional double-well problem is indicated. Thus, the spectrum 
of the operator K is discrete, extends from -CC to +CC and is symmetric with respect 
to the infinitely degenerate eigenvalue k = 0. For n 3 10, equation (186) can easily be 
solved numerically. 

With known eigenvalues k;, all the coefficients of the polynomials fnA ( U )  can be 
expressed in closed form. This is shown in the appendix, where in addition the explicit 
expressions for the first few polynomials are given. From (14) simple expressions 
follow for polynomials corresponding to eigenvalues k," = 0 (in that case j = N / 2  is 
an integer): 

(24) 

where y = (2p - 1)/4 and Ljy ' ( z )  are generalised Laguerre polynomials (Abramowitz 
and Stegun 1964). 

fno( U )  = constant x ,L$")( u 2 / 2 )  

0 2 4 6 8 10 
E 

Figure 1. Coordinates of heavily marked dots give the quantised values of the energy 
E = E, and separation constant k = k : .  Schematically also shown are the eigenvalues 
*k,(E) of the symmetric double-well problem (9a) corresponding to even (full lines) and 
odd (broken line) eigenstates. The labels q * ( q  = 0, 1 , .  . .) denote the number of nodes and 
the parity of the corresponding eigenfunction. 

Table 1. Eigenvalues k ;  for n = 0, 1,. . , ,9. See also relations (19a, b )  

0 0 0  0 5 1 0 , l  0, 16 
1 0 0  0 6 $ 1 3  21 2 3 ( 5  T 2fi) 

3 $ 4  3 8 2 0,1,2 0,4( lOTm) 
4 1 0,l 0,s 9 2 0,1,2 0 , 1 2 ( 5 T f i )  

2 4 4  1 7 ; 1 3  2r2 2 5 7 2 m  
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3. Connection between the two bases 

The normalised wavefunctions { (Cl,,* (5, 7)) and { $,,, ( x ,  y ) } ,  ( A ,  p = -j ,  . . . , + j )  span 
the same n-subspace of the Hamiltonian H and are connected by the unitary ( 2 j +  1 )  x 
( 2 j + l )  matrix C": 

By acting with the operator K on both sides of (25 )  and projecting on the states Inp) 
one finds the system of equations determining the matrix elements of C " :  

c [(np IKI w')  - k j : 4 4 I G , ,  = 0, p = -j ,  . . . , +j. (26)  , 
The non-zero matrix elements of operator ( 5 )  or ( 5 a )  can be directly calculated by 
using standard one-dimensional harmonic oscillator matrix elements (Landau and 
Lifshitz 1977): 

(nplKlnp - 1 )  = (np - 1 IK lnp)  = 2 [ (  j +  p ) (  n - 2j - 2 p  + 1 ) (  n - 2j - 2 p  +2]1 '2 .  (27)  

The tridiagonal determinant associated with the system (26 )  should be equal to zero. 
If one assumes that k ;  are unknown, this just gives another way to calculate the 
eigenvalues of operator K .  In particular, the results of table 1 can be rederived. Note 
that here, unlike in (18a ) ,  the corresponding matrix is symmetric (real Hermitian). 

Apart from being unitary the matrices C" possess an additional symmetry which 
follows from the transformation properties of the two bases {InA)} and {Inp)} under 
reflections with respect to the x and y axes. Let us define the parity operators: 

IT,[(x,  Y )  + ( - x ,  y ) l =  n,[(5, 77) + (sgn 5%151)1, ( 2 8 ~ )  

H,[(x, Y )  + ( x ,  - Y ) l =  n,[(5, rl) + (-5, 7711, (28b)  

n [ ( x , Y ) - , ( - x ,  -Y)l=nln,. ( 2 8 ~ )  

The action of these operators on the eigenfunctions is given by 

nllw) = ( - l ) ' + p l w ) ,  n , l n ~ ) =  - A ) ,  (29a )  

n,lncO= ( - 1 ) " I w ) ,  II,(nA) = (-l)"lnA), (29b)  

IIlnp)= (-l)"+j+@ I np),  (29c) 

Note that only II, commutes with K .  Of course, one can form symmetric and antisym- 
metric combinations of the vectors InA) and In - A )  in order to construct the common 
basis of H, K Z  and II. 

Upon acting with II, on both sides of (25 )  one derives the above-mentioned 
symmetry property: 

ni n h )  = (-  i)"1 n - A ) .  

CY,, = ( - l ) J + T j ; , , .  (30) 

Hence, it is sufficient to solve for Cy, with A 3 0 in order to obtain the matrix C". For 
given n and kj; closed-form expressions can be derived for the matrix elements Cj;,,, 
These are given in the appendix together with the explicit form of the first few 
matrices C". 
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4. Application to perturbation theory 

In a number of papers (Noid er al 1979, Sanders 1981, Eaker and Schatz 1984) the 
quantum mechanical spectrum of the classically non-integrable Hamiltonian 

f i = H + a V ,  (31) 

V = x ( y ' + p x Z ) ,  (32) 

with H given by (1) and 

has been investigated by employing the various semiclassical methods of quantisation. 
Using the results of the preceding sections we derive below the quantum mechanical 
perturbation theory result up to second order in the coupling constant a. Of course, 
due to the cubic terms in (32) one can talk only about the quasi-stationary quantum 
states. For the present consideration of the low-lying part of the spectrum, we assume 
that all effects associated with the tunnelling into the continuum can be neglected. 

Direct calculations show that the only non-zero matrix elements of the perturbation 
V in the Inp) basis are 

( n p l V l n - 6 p  -$)=(n - 6 p - $ j V l n p ) = $ p [ ( j + p ) ( j + p  -1 ) ( j+p-2 ) ]1 '2 ,  (33a) 

(npl Vln - 4 p )  = ( n  - 4pl Vlnp)  =a[  ( j  + p ) (  n - 2 j  - 2 p ) (  n - 2 j  - 2 p  - 1)]lI2, (336) 

(npl Vln - 2 p  -f) = ( n  - 2 p  - f l  Vlnp)  = i ( j +  p y 2 ( 2 n  -4 j  - 4 p  + l ) + i P ( j +  p ) 3 / 2 ,  
(33c) 

(npl ~ l n p  - l ) = ( n p  - 11 ~ l n p )  = f [ ( j + p ) ( n  - 2 j - 2 p  + l ) ( n  - 2 j - 2 p  +2)]'12. (33d) 

By comparing (33d) with (27) one concludes that within the given n-subspace 
operator equality holds: V =  K / 8  and therefore V is diagonal in the { Inh) }  basis. 
Hence perturbed energies can be labelled by 

(34) E , , = E , , + ~ E ' , ' , ' + ~  2 E , ~  ( 2 )  

E",'=$ky.  (35) 

and the first-order correction is given simply by 

Once the 'proper' basis of the degenerate zero-order Hamiltonian is known, the 
second-order energy shift is given by (Landau and Lifshitz 1977) 

By substituting (25), (33a)-(33c) in (36) and using the unitarity properties of the 
matrix elements C,", one derives the closed form result 

E',Z,'=-& 2 IC,",12W(n,p) 
, = - I  

where 

W(n,  p )  = 15p2( j + p ) 2 + 9 ( n  -2 j  - 2 ~ ) ' + 4 ( 6 p  + l ) ( j + p ) ( n  - 2 j  - 2 p )  

+ ( 15p2+ 12p + 2 ) ( j +  p )  

+ (12p + 11)( n - 2j - 2 p )  + y p 2 + 6 p  +4. 
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By using the averaging method of classical mechanics (Bogoliubov and Mitropolsky 
1961) and second quantisation, Sanders (1978) has derived an effective Hamiltonian 
(up to second order in a) which he then diagonalises in a given n-subspace in order 
to obtain the approximate eigenvalues of (31). By using the representation ( s a )  of 
the operator K one can conclude that the first-order result of Sanders is equivalent to 
ours, i.e. equation (35). The second-order term in the effective Hamiltonian of Sanders 
contains a factor of the form (37b). The only difference is that in the case of Sanders 
the last term in (376) reads 15p2/4+6p+13/4.  Obviously, the method based on 
classical mechanics fails to reproduce this term correctly. For large quantum numbers 
the difference is insignificant. 

In tables 2 and 3, the energy levels, as calculated from equations (34) and (37a, b), 
are shown for two sets of parameters (Y and p. For comparison, also shown are the 

Table 2. Energy levels of Hamiltonian (31) as predicted by various methods. E,, unpertur- 
bed levels; E,, present perturbational results; E,, present quantum-variational results; E,,,  
results ,Of Sanders (1981). Res!lts are given in units used by Sanders (1981), so that 
E, = WE,,, where w = 0.7 and E,, is given by (34)-(37) with a = - 0 . 0 4 ~ - ~ ' ~ ,  p = -0.04. 

~ 

0 0 1.050 
1 0 1.75 
2 I 2.45 

-5 2.45 
3 T 3.15 

-I 3.15 
4 1 3.85 

0 3.85 
-1 3.85 

5 1 4.55 
0 4.55 

- 1  4.55 

I 5.25 

-I 5.25 

I 

1 

1 

I 

3 

1 

1 

3 

6 2 5.25 

2 5.25 _- 

1.0496 
1.7476 
2.4221 
2.4709 
3.1001 
3.1847 
3.7694 
3.8444 
3.908 1 
4.4350 
4.5367 
4.6316 
5.0959 
5.2050 
5.2683 
5.3587 

1.0496 
1.7476 
2.4224 
2.4707 
3.1007 
3.1843 
3.7706 
3.8445 
3.9072 
4.4370 
4.5369 
4.6301 
5.0990 
5.2065 
5.2672 
5.3565 

1.0488 
1.7409 
2.4223 
2.4709 
3.1005 
3.1846 
3.7700 
3.8446 
3.9079 
4.4362 
4.5370 
4.63 11 
5.0978 
5.2054 
5.2685 
5.3579 

Table 3. Same as table 2, but for a = -0 .08~- ' '~ ,  p = -0.08. E, are the results of the 
Fourier-transform based semiclassical method (Eaker and Schatz 1984). 

0 0 1.050 
1 0 1.750 
2 I 2.45 

3 I 3.15 
-2 3.15 

4 1 3.85 
0 3.85 

- 1  3.85 
5 1 4.55 

0 4.55 
- 1  4.55 

1 

I 

I 

I 

2 2.45 -- 

1.0485 
1.7404 
2.3859 
2.4863 
3.0316 
3.2070 
3.6584 
3.8275 
3.9495 
4.2729 
4.4960 
4.6884 

1.0485 
1.7406 
2.3883 
2.4849 
3.0371 
3.2044 
3.6702 
3.8285 
3.9434 
4.2928 
4.4988 
4.6792 

1.0497 
1.7476 
2.3873 
2.4865 
3.0354 
3.2067 
3.6659 
3.8285 
3.9487 
4.2862 
4.499 1 
4.6863 

-~ 

1.049 
1.745 
2.391 
2.477 
3.030 
3.209 
3.654 
3.828 
3.946 
4.269 
4.517 
4.683 
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present results of converged ‘exact’ quantum calculations (diagonalisation in the 1 np) 
harmonic oscillator basis of 72 eigenfunctions), the above-discussed results of Sanders 
(1981) and the semiclassical results based on quantisation of classical action variables 
by means of the fast-Fourier transform method (Eaker and Schatz 1984). It can be 
seen that the agreement between the present perturbation results and ‘exact’ quantum 
calculations is very good for low-lying states. The largest improvement, as compared 
with the results of Sanders, is, as expected, for the ground and first excited states. At 
higher excitations the perturbational results are less accurate. 

In the work of Noid et a1 (1979) there is a misprint which alters the sign of the 
parameter /3 in perturbation (29) (see the footnote in Wardlaw et a1 (1984)). Therefore, 
the results given in their tables I and I1 correspond respectively to p = 0.08 and /3 = 0.04 
and should not be compared with the results shown in tables 2 and 3 (similarly to 
Sanders (1981) and Eaker and Schatz (1984)). 

5. Semiclassical quantisation 

Complete information on semiclassical spectra of both H and K can be obtained by 
considering one of the one-dimensional boundary value problems (9a, b), together 
with the additional condition (12). When applied to the symmetric double-well problem 
(9a), uniform semiclassical quantisation conditions (Child 1974) result in the following 
equation for determination of the eigenvalues k, corresponding, respectively, to even 
and odd eigenfunctions: 

y (  E, k) -&[ -(2/ n)S( E, k)] 5 $ tan-’{exp[ -2S(E, k)]) = (ne,,++) (38) 

where ne,,=O, 1, 2,. . . and 

v(x) = -v(-x) =arg r ( + + i x ) + x ( l  -In 1x1). (39) 

In equation (38) the phase integrals are defined as 

with 

p ( E ,  k, 5) = (2Et2 - t6+ k)”2. (41) 

Above, & > 0 is the turning point which is real for botb k S 0, and t1 satisfies 0 < t1 < e2 
for k < 0 and Re & = 0, Im t1 > 0 for k > 0. That branch of (41) is chosen which renders 
6 > 0  for k<O and S < O  for k > 0 .  

By noting that 

M E ,  k, 5) = p ( E ,  -k, i5), (42a) 

i5l(E, k) = &(E,  -k), 
one can prove the important relations 

S (  E, k) + S (  E, - k) = 0, 

y(  E, k) + y (  E, - k) = i q E .  

(43) 

(44) 
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Equation (43) directly follows from (42a, b)  and (41b), whereas the proof of (44) is 
more involved. By using contour integration in the complex &plane one can show 
that the partial derivative with respect of k of the left-hand side of (44) vanishes for 
any k. Then y(  E, 0) is easily calculated from (40a) to obtain the right-hand side of 
(44). As will be mentioned below, relation (44) also follows from other considerations. 

Turning back to condition (12), we demand that if k is an solution of (38) for given 
E and nL,o then - k  should also be the solution for the same E and some other n:,o. 
By using now (43) and (44) and the identity 

tan-’[exp(-x)] + tan-’[exp(x)] =in, (45) 

E = E ,  = n +$ (46) 

valid for any real x, one finds again the exact quantisation condition for the energy: 

where n = 2(n:+ n:) for even states and n = 2 ( n b +  ng)  + 1 for odd states. 
Thus, semiclassical approximations of the eigenvalues k ;  of the operator K can 

be found from (38)  in which E = E,  and ne,o = j + A = 0,1,  , , . ,2j. Note that, whenever 
n is of the form 41, 41 + 1 ( I  integer), equation (38) gives the exact eigenvalue k,“ = 0. 

Various approximate formulae can be derived from (38)  (Child 1974, Bhattacharya 
1985). For example, when n >> 1 and k is not too close to zero, eigenvalues for say 
A < O  are given by 

k ;  = L; + ( - l ) , + ’ A :  

?(E,, k )  E y (  E,, k )  -$v[ -(2/ n)S( E,, k)]  = ( j  + A +f) 

(47) 

(48) 

where k‘; is the solution of the equation 

Note that here, since for given n all states are of well defined parity n,, one can 
talk only about the exponential shifts (49) rather than about the familiar exponential 
splittings in the one-dimensional symmetric double-well problem (see also figure 1). 

Concluding this section we make a few remarks on ‘quantising trajectories’ of 
Hamiltonian ( 1 )  corresponding to quantised values of classical integrals of motion E 
and K .  The analysis of these trajectories has been used by Noid et a1 (1979) as a 
starting point for quantisation of the near-integrable Hamiltonian (31). Noid et a1 
define the classical action variables I S ( E ,  k )  and Z,,(E, k )  based upon the separation 
of variables in the Hamilton-Jacobi equation in parabolic coordinates. These action 
variables are simply related to the phase integrals of the form (40a). In particular the 
relation (44) follows from the canonical invariance of the total action (Noid et a1 1979) 

I = ( 2 r l - I  fc P, d4, = E 

where ( p t ,  4 z )  is any set of canonically conjugate momenta and coordinates and C is, 
in this degenerate case, the trajectory. The action variables I,( E,  k )  and I,(  E,  k )  have 
been quantised by applying the combination of approximate quantisation conditions 
of the form (48) (without the correction ~ ( x ) )  and exact quantisation conditions for 
trajectories with k = 0. As can be seen from figure 1 this is not a bad approximation 
even for small values of n. Actually, in situations like this when the exact quantised 
values of both E = E,  and k = k ;  are known, it is more correct to define the quantised 
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action variable simply as It(E,, k : )  and ZJE,, k : ) .  In this way the quantum effects 
of tunnelling and over barrier reflection, present in the zero-order Hamiltonian, are 
effectively accounted for. 

6. Concluding remarks 

Some of the approaches used in the present work can be generalised to any two- 
dimensional harmonic oscillator with commensurate frequencies. Thus in the case 
w , / r =  w y / s  = 1 ( r ,  s integers) the analogues of ( l a )  and (56) would be 

H = ra;a, + sa:a, +$( r + s), 
K = constant[ a:( + (a:) '(  a,)']. 

One can then use the method of § 3 to derive the eigenvalues of K and the unitary 
transformation connecting the Cartesian basis and the common eigenbasis of H and K. 

On the other hand, the coordinate systems, different from Cartesian, which allow 
the separation of variables in the Schrodinger equation seem to be known only when 
r = s = 1 (polar coordinates) and r = 2, s = 1 (parabolic coordinates). 
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Appendix 

For given n = 2 N + p  and k =  k ;  all coefficients a, of the polynomial (15) can be 
expressed from equation (17) in terms of a, (see also Chaudhuri and Mukherjee 1984): 

a, = (-1)'[Ds/(2s+p)!lao, s = 1 , 2  , . . . ,  N, ( A l l  
where D, is an s x s tridiagonal determinant with non-zero matrix elements 

Dj,t-, = 4( N + 2 - i), 
(A2) 

0, is obtained from DN+,,  equation (18a),  by retaining the first s rows and s columns. 
From ( 17), the following recurrence relations can be derived: 

(A31 

with D-, = 0, Do = 1. The first few polynomials fnA ( U )  are given in table 4. 
The unitary matrices C", connecting the {Inh)} and {In*)} bases, can be obtained 

by solving equations (26). For given n and k = k:  all coefficients Cyp, I.L = -j, . . . , j - 1, 
can be expressed in terms of C;]: 

D,, = k .  D,,,,, = 2i(2i + 2p - l ) ,  i = 1 , 2  , . . . ,  s. 

D, = kD,-, - 4( N - s + 2 ) ( 2 ~  + p  - 2 ) ( 2 ~  + p  - 3)D,-, 
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Table 4. Polynomials f,,* ( U), for n = 0, 1, . . . , 5 .  Polynomials are normalised so that a, = 1 
for each (n, A ) .  

n i  A f n * ( U )  n J  A f"*(U) 

0 0  0 1 4 1  0 1 -$U' 

2 ; *f 1 T A U  5 1  0 1 -5.2 

3 ; .; 1 F f & U  i 1  1 r*u+ju* 

1 0  0 1 *I 1 T4u +2u2 

where - p )  x ( j  - p )  determinant obtained from the determinant of the 
homogeneous system of equations (26)  by retaining the last j - p columns and j - p 
rows. The coefficient Czj is fixed up to a phase by the unitarity condition 

is the 

with the convention A. = 1 .  From (A4) and (26 )  one derives the recurrence relations 

Aj-,, = - k A j - , - , - 4 ( j + p + 2 ) ( n - 2 j - 2 p - 3 ) ( n - 2 j - 2 p - 2 ) A j - , - 2  ('46) 
with A w l  = 0. By identifying n = 2 N  + p ,  2j = N, p = j - s and comparing with (A3) 
one finds that 

A,-p = ( -1 ) 'Ds .  ('47) 

For n = 0, 1 ,  . . . , 6  the matrices C "  are listed below. Columns correspond to C;, with 
p =- j , .  . . , j  and rows to C;, with A =- j , .  . . , j .  Phases have been fixed so that 
c;-j>o. 
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